
Unbinned Maximum Likelihood Method for

asymmetry extraction at PHENIX

Anselm Vossena, John Kostera

a University of Illinois at Urbana Champaign

Abstract

This writeup describes the unbinned maximum likelihood method to extract
physics asymmetries at PHENIX. As a concrete example, the extraction of AN
is considered. A simple approach in which AN is the only free parameter is
described in detail. The corresponding implementation was used to extract AN
from neutral pions in the central arm and a comparison with ’traditional’ left-
right asymmetries is shown. Several ways to extend this methods are shown which
will enable the combination of fills and beams in a natural way. This will allow
the use of the full statistics in the future to extract AN with minimum variance.
The method is flexible enough to be extended to asymmetries depending on two
azimuthal angles.
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1 Introduction

The maximum likelihood principle is a good method to arrive at a bias free estimator
with minimum variance [1]. Since it allows to build an estimator from ”‘first principles”’
is also allows for the integration of a priori knowledge which is otherwise difficult to
consider. Here an unbinned method is presented, in which each event contributes. This
prevents loss of information due to binning. The primary motivation to construct this
estimator for PHENIX transverse spin analysis has been to construct a method that is
able to deal with time dependent acceptances, more complicated angular dependences
and low count rates. Here only an implementation for the most simple case in which
the asymmetries are considered fill by fill (and beam by beam) is presented. This has
been successfully tested for AN asymmetries extracted from run8 data in the central
arm [3] and results are shown. In addition, several ways to extend this method to
integrate fills and beams, have more complicated angular dependences and estimate
the observed variance are discussed.

2 Maximum Likelihood Method for AN

The maximum likelihood estimate of a parameter maximizes the probability of the
observation. In the case of the AN asymmetry the observation are the counts in a
specific angular bin. As long as only one particle in the final state is observed, only one
azimuthal (around the beam axis) angle (Φ) can be constructed with the spin vector
and the momentum of the unpolarized particle. Including acceptance and efficiency
Acc and factors like beam flux f , the probability distribution function for events with
an angle Φ is

P (Φi) = Acc · f · (1± AN cos(Φi)) . (1)

Here we neglect constant factors (like the normalization) because they do not play
a role in the minimization. The extended likelihood of the observation of N events is
therefore:

L(AN) =
∏
N

Acc · f (1± AN cos(Φi))
e−µµN

N !
. (2)

1 The sign of AN depends on the polarization.

The “extension” e−µµN

N !
is the Poisson-probability to observe the number of events

N if the expected number of events is µ.
For now this factor is not important, since a variation of A will not impact µ.

However, if for example the efficiency is allowed to change in time, this factor becomes
important. Without it, the likelihood could grow infinitely with the choice of an infinite
efficiency.

Equation 2 is already instructive how to compute the likelihood.

1the likelihood of observing Φ is obviously zero, but (hopefully) w.l.o.g we drop dΦ’s etc. with the
same argument that we drop other constant factors
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We just look for ÂN such that ÂN = argmax
AN

L(AN).

For practical reasons one chooses instead to minimize the negative log likelihood.
Then the products become sums and the numbers that are computational tractable.

The expected number of events in this basic case is

• µ↑ = 2π ∗ Lrel

• µ↓ = 2π

Here Lrel is the relative luminosity of polarized protons in the state ↑ with respect to
those in the state ↓2. It is up to each analyzer to determine their own measure of the
realitve luminosity.

3 Combining Fills and blue/yellow beam data

In the case of limited statistics, it might be necessary to combine fills and asymmetries
in which the yellow or the blue beam was polarized. Otherwise the error estimates be-
come unreliable. The maximum likelihood method is no exception and might develop a
bias for small sample sizes. However, it allows to combine asymmetries taken at differ-
ent times in a more natural way. Just combining statistics might lead to a bias due to
time dependent detector efficiencies as discussed in [4]. The solution in this reference
is a normalization of the relative luminosity such that Lrel ≈ 1 by dropping events.
However, using a maximum likelihood method, this is not necessary anymore, since for
each fill and beam acceptance parameters afill, beam can be added, accounting for the
possible change over time. These ’nuisance parameters’ are estimated together with
AN and might also provide insights into detector behavior over time. As long as only a
one dimensional modulation is measured, i.e. only in the angle φ, constant acceptance
factors are sufficient. The situation is different for correlation measurements. Then
the count rates can be differential in two azimuthal angles φ1, φ2. Convolution with
the acceptance can then lead to complicated interference effects. Since these effects
depend on the respective Fourier coefficients of the acceptance, the acceptance function
should have enough degrees of freedom to reflect this. However, in practice the numer-
ical differences between the different orders are so large, that the zeroth coefficient is
sufficient. For the case of semi deep inelastic scattering, more details can be found in
[5].

4 Estimating the variance of the asymmetry

Currently we estimate the error on the extracted asymmetry as

σAN = − ∂2 ln(L)

∂2AN

∣∣∣∣
ÂN

. (3)

2↑↓ have the obvious meaning of polarization states
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However, in the future the variance of the asymmetry can be directly estimated from
the data. To this end, the likelihood can be written as

L(AN , σAN ) =
∏
N

Acc · f (1± gauss(AN , σAN ) cos(Φi))
e−µµN

N !
. (4)

Here both, the asymmetry and its error, are directly estimated from data. This
might lead to a more stable estimate and is independent of the statistical models of
specific count-rates.

5 Implementation and Results

The Fletcher-Reeves conjugate gradient method as implmented in the GNU scientific
library was used [2]. This is a popular example of a conjugate gradient algorithm
using line searches to avoid the solution of a quadratic problem in each step. For
the solution the minimum is iteratively searched for along a line. The direction of
the line is defined by conjugate gradients. At the starting point the gradient of the
function is chosen as the direction in which to search. For subsequent steps, the new
direction is a conjugate of the old one and the gradient of the function at the new
point. This method is only slightly more complicated than usual gradient descent
methods, but converges much faster. In this application, where the number of free
parameters is very limited, an easier algorithm would also work. In fact, we tested a
simplex minimization scheme, that does not require the computation of the derivatives.
However, for extensions as outlined in this document, the use of a more advanced
algorithm will be necessary. After testing with toy monte-carlo, we tested the unbinned
maximum likelihood estimator on the Run-8 dataset to estimate AN in the central arm.
The following figures show the comparison with the ’traditional’ left-right asymmetries.

5.1 Code location

The code for the MLE and the toy MC can be found in

/phenix/u/workarea/vossen/phMLE/

The integration in the central analysis code in

/phenix/u/workarea/jkoster4/devel/CentAn/nana/ssa/attic/calcssa_anselm.cc

Some familiarity with the central arm analysis is assumed here. However, for de-
tails on the central arm method, please see [3]. Asymmetries are calculated in the π0

and η mass windows which include some combinatorial background contribution. The
background asymmetry is estimated using the high and low mass windows around the
meson mass. Then, using an estimate of the background contamination level, the pure
signal asymmetry is extracted. The results shown here are for the un-corrected asym-
metries which have yet to be to subtracted. The “traditional” formula for calculating
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left-right asymmetries in PHENIX is:

εN = εlumi =
N↑ −RL ·N↓
N↑ +RL ·N↓

(5)

= PAN〈cos(φ)〉 (6)

where P is the polarization and 〈cos(φ)〉 is a weighting term for the distribution of
particles around the polarization direction and is determined from data. A simple
comparison of the results for one particular set of cuts is shown in figure 1.

Figure 1: AN values averaged over all fills of run8pp using even crossings, the blue beam,
in the π0 mass window and plotted against pT . Black points: traditional luminosity
asymmetry calculation, Red points: extended maximum likelihood method.

We aggregated all the asymmetries together to get a sense of their overall agreement.
These results are shown in figure 2. In general, the results agree very well. However,
for high count rates, there seems to be some deviation. As one would in general expect
better agreement for a high number of events, we conclude that the reason is numerical
precision. As we use floating point number throughout, the precision gets less, when
a large number of events are summed up. This problem can be solved by using higher
precision. But since the main application will be analysis with low count rates we did
not implement this change yet.

6 Summary

An unbinned estimator for AN using the maximum likelihood method was introduced.
It was implemented and tested on real data. The results were consistent with methods
currently used in the analysis. It was shown how to extend the estimator to combine
different datasets by introducing nuisance parameters describing possible time depen-
dent acceptances and efficiencies of the detector. This will enable the use of the full
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Figure 2: Comparison between the “traditional” and MLE methods. X-axis “tradi-
tional” asymmetry values, Y-axis MLE asymmetry values. All four mass bins (π0

signal, π0 background, η signal, η background), both beams (blue and yellow), both
crossing selections (even and odd) and all pT points are drawn. The “traditional” asym-
metry calculation was tweaked slightly after the plots were made, but still correspond
closely to the final results made preliminary on Dec. 11, 2009.

data sample without the need to normalize relative luminosities. The authors plan to
implement these in the near future. Together with the natural extension to asymme-
tries dependent on more than one angle and the possibility to estimate the variance of
the observables directly from data, the maximum likelihood estimator described here
will be a valuable tool in future, more complex analysis.
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